使用卷积网络处理序列
问题
- 文本类
分别是好评还是差评
代码样例
- 时间序列类
给定过去lookback个时间步之内的天气数据(气温),能否预测delay个时间步之后的数据(气温)?
代码样例
数据处理
- ①文本类:见前文本序列Embedding,如果只imdb封装好的直接load再pad_sequences
- ②时间序列类:
按照时间步长划分批次选取数据
### 为耶拿数据准备更高分辨率的数据生成器 #导入数据 import os import numpy as np data_dir = 'D:\\Jupyter\\Keras\\jena_climate_2009_2016.csv\\' fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv') f = open(fname) data = f.read() f.close() lines = data.split('\n') header = lines[0].split(',') lines = lines[1:] float_data = np.zeros((len(lines), len(header)-1)) for i, line in enumerate(lines): values = [float(x) for x in line.split(',')[1:]] float_data[i, :] = values mean = float_data[:200000].mean(axis=0) float_data -= mean std = float_data[:200000].std(axis=0) float_data /= std def generator(data, lookback, delay, min_index, max_index, shuffle=False, batch_size=128, step=6): if max_index is None: max_index = len(data) - delay - 1 i = min_index + lookback while 1: if shuffle: rows = np.random.randint( min_index + lookback, max_index, size=batch_size) else: if i + batch_size >= max_index: i = min_index + lookback rows = np.arange(i, min(i + batch_size, max_index)) i += len(rows) samples = np.zeros((len(rows), lookback // step, data.shape[-1])) targets = np.zeros((len(rows),)) for j, row in enumerate(rows): indices = range(rows[j] - lookback, rows[j], step) samples[j] = data[indices] targets[j] = data[rows[j] + delay][1] yield samples, targets step = 3 lookback = 720 # Unchanged delay = 144 # Unchanged train_gen = generator(float_data, lookback=lookback, delay=delay, min_index=0, max_index=200000, shuffle=True, step=step, batch_size=batch_size) val_gen = generator(float_data, lookback=lookback, delay=delay, min_index=200001, max_index=300000, step=step, batch_size=batch_size) test_gen = generator(float_data, lookback=lookback, delay=delay, min_index=300001, max_index=None, step=step, batch_size=batch_size) val_steps = (300000 - 200001 - lookback) // 128 test_steps = (len(float_data) - 300001 - lookback) // 128
模型构建
文本类(用了Embedding和全池化层)
Embedding输入【samples, maxlen】
Embedding输出【samples, maxlen, input_fratures】
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()#【None,500】
model.add(layers.Embedding(max_features, 128, input_length=max_len))#【None,500,128】
model.add(layers.Conv1D(32, 7, activation=’relu’))#(None, 494, 32)
model.add(layers.MaxPooling1D(5))#(None, 98, 32)
model.add(layers.Conv1D(32, 7, activation=’relu’))#(None, 92, 32)
model.add(layers.GlobalMaxPooling1D())#(None, 32)
model.add(layers.Dense(1))#(None, 1)
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4),
loss=’binary_crossentropy’,
metrics=[‘acc’])
history = model.fit(x_train, y_train,
epochs=10,
batch_size=128,
validation_split=0.2)
时间序列类(用了CNN和GRU)
输入数据
【batch_size, 时间步,属性dims】
输出
[batch_size,dims] or [batch_size, 时间步,dims]
结合一维卷积基和GRU层的模型
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
model = Sequential()
model.add(layers.Conv1D(32, 5, activation=’relu’,
input_shape=(None, float_data.shape[-1])))# (None, None, 32)
model.add(layers.MaxPooling1D(3))#(None, None, 32)
model.add(layers.Conv1D(32, 5, activation=’relu’))#(None, None, 32)
model.add(layers.GRU(32, dropout=0.1, recurrent_dropout=0.5))#(None, 32)
model.add(layers.Dense(1))# (None, 1)
model.summary()
model.compile(optimizer=RMSprop(), loss=’mae’)
history = model.fit_generator(train_gen,
steps_per_epoch=500,
epochs=20,
validation_data=val_gen,
validation_steps=val_steps)
模型评估
- 绘图,见前【acc,val_acc,loss,val_loss】