卷积神经网络的可视化
- 可视化卷积神经网络的中间输出(中间激活)
- 可视化卷积神经网络的过滤器
- 可视化图像中类激活的热力图
0x00 准备
#为中间激活做准备 from keras.models import load_model model = load_model('cats_and_dogs_small_2.h5') model.summary() img_path = 'E:\\BaiduNetdiskDownload\\kaggle\\train\\cat.1700.jpg' #预处理单张图像 from keras.preprocessing import image import numpy as np img = image.load_img(img_path, target_size=(150, 150)) img_tensor = image.img_to_array(img) img_tensor = np.expand_dims(img_tensor, axis=0)#在0轴上添加此数据 img_tensor /= 255. #其形状为(1,150,150,3) print(img_tensor.shape) #显示测试图像 import matplotlib.pyplot as plt plt.imshow(img_tensor[0]) plt.show()
0x01 可视化中间激活
#用一个输入张量和一个输出张量列表将模型实例化 #Keras的Model类,模型实例化需要两个参数,输入张量(列表),输出张量(列表) from keras import models layer_outputs = [layer.output for layer in model.layers[:8]] activation_model = models.Model(inputs=model.input, outputs=layer_outputs) #以预测模式运行模型 activations = activation_model.predict(img_tensor) #提取第一层 first_layer_activation = activations[0] print(first_layer_activation.shape) #将原始模型第一层激活的第四个通道可视化 %matplotlib inline plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')#cmap指定显示的颜色模式,viridis适合鲜绿色圆点 print(first_layer_activation[0, :, :, 4].shape) #将原始模型第一层激活的第七个通道再可视化 plt.matshow(first_layer_activation[0, :, :, 7], cmap='viridis')
#将每个中间激活的所有通道可视化 import keras # These are the names of the layers, so can have them as part of our plot #层名 #遍历每层特征图,将特征数按照规定的宽度划分成个矩阵,取size建立对应的包含这层所有特征的显示大图 #显示大图和层数相同且一一对应 layer_names = [] for layer in model.layers[:8]: layer_names.append(layer.name) images_per_row = 16 # Now let's display our feature maps for layer_name, layer_activation in zip(layer_names, activations):#遍历每层,显示特征图 # This is the number of features in the feature map n_features = layer_activation.shape[-1]#特征图中特征个数 #特征图的形状是(1,size,size,n_features) # The feature map has shape (1, size, size, n_features) size = layer_activation.shape[1] # We will tile the activation channels in this matrix n_cols = n_features // images_per_row#在这个矩阵中将激活通道平铺,‘//’是非精确除法,是截断除法 display_grid = np.zeros((size * n_cols, images_per_row * size)) # We'll tile each filter into this big horizontal grid for col in range(n_cols): for row in range(images_per_row): channel_image = layer_activation[0, :, :, col * images_per_row + row] # Post-process the feature to make it visually palatable channel_image -= channel_image.mean() channel_image /= channel_image.std())#空参数应该是全局标准差 channel_image *= 64 channel_image += 128 channel_image = np.clip(channel_image, 0, 255).astype('uint8')# 限制元素在0-255之间 display_grid[col * size : (col + 1) * size, row * size : (row + 1) * size] = channel_image # Display the grid scale = 1. / size plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])) plt.title(layer_name) plt.grid(False)# 关闭背景的网格线 plt.imshow(display_grid, aspect='auto', cmap='viridis') plt.show()
0x02 可视化神经网络的过滤器
- 定义张量损失:输出的指定特征通道的均值
- 定义梯度:输入对于损失下降
- 梯度标准化
- 通过随机梯度下降让损失最大化
#定义将张量转化为有效图像的实用函数 def deprocess_image(x): # normalize tensor: center on 0., ensure std is 0.1 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 # clip to [0, 1] x += 0.5 x = np.clip(x, 0, 1) # convert to RGB array x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x #定义过滤器可视化的函数 def generate_pattern(layer_name, filter_index, size=150): # Build a loss function that maximizes the activation # of the nth filter of the layer considered. layer_output = model.get_layer(layer_name).output loss = K.mean(layer_output[:, :, :, filter_index]) # Compute the gradient of the input picture wrt this loss grads = K.gradients(loss, model.input)[0] # Normalization trick: we normalize the gradient grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5) # This function returns the loss and grads given the input picture iterate = K.function([model.input], [loss, grads]) # We start from a gray image with some noise input_img_data = np.random.random((1, size, size, 3)) * 20 + 128. # Run gradient ascent for 40 steps step = 1. for i in range(40): loss_value, grads_value = iterate([input_img_data]) input_img_data += grads_value * step img = input_img_data[0] return deprocess_image(img) #使用 plt.imshow(generate_pattern('block5_conv3', 5)) plt.show()
#生成某一层中所有过滤器响应模式组成的网路 for layer_name in ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1']: size = 64 margin = 5 # This a empty (black) image where we will store our results. results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3)) for i in range(8): # iterate over the rows of our results grid for j in range(8): # iterate over the columns of our results grid # Generate the pattern for filter `i + (j * 8)` in `layer_name` filter_img = generate_pattern(layer_name, i + (j * 8), size=size) # Put the result in the square `(i, j)` of the results grid horizontal_start = i * size + i * margin horizontal_end = horizontal_start + size vertical_start = j * size + j * margin vertical_end = vertical_start + size results[horizontal_start: horizontal_end, vertical_start: vertical_end, :] = filter_img # Display the results grid plt.figure(figsize=(20, 20)) plt.imshow(results) plt.show()
类激活的热力图
#图像准备 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input, decode_predictions import numpy as np # The local path to our target image img_path = 'D:\\Jupyter\\elephant.jpg' # `img` is a PIL image of size 224x224 img = image.load_img(img_path, target_size=(224, 224)) # `x` is a float32 Numpy array of shape (224, 224, 3) x = image.img_to_array(img) # We add a dimension to transform our array into a "batch" # of size (1, 224, 224, 3) x = np.expand_dims(x, axis=0) # Finally we preprocess the batch # (this does channel-wise color normalization) x = preprocess_input(x) #加载VGG16模型预处理 from keras.applications.vgg16 import VGG16 model = VGG16(weights='imagenet') preds = model.predict(x) print('Predicted:', decode_predictions(preds, top=3)[0]) #Predicted: [('n02504013', 'Indian_elephant', 0.59529865), ('n01871265', 'tusker', 0.26843295), ('n02504458', 'African_elephant', 0.094206899)] #应用Grad-CAM算法,算热力图 np.argmax(preds[0]) #385 from keras import backend as K import numpy as np #Grad-CAM算法 # This is the "african elephant" entry in the prediction vector african_elephant_output = model.output[:, 386] # The is the output feature map of the `block5_conv3` layer, # the last convolutional layer in VGG16 last_conv_layer = model.get_layer('block5_conv3') # This is the gradient of the "african elephant" class with regard to # the output feature map of `block5_conv3` grads = K.gradients(african_elephant_output, last_conv_layer.output)[0] # This is a vector of shape (512,), where each entry # is the mean intensity of the gradient over a specific feature map channel pooled_grads = K.mean(grads, axis=(0, 1, 2)) # This function allows us to access the values of the quantities we just defined: # `pooled_grads` and the output feature map of `block5_conv3`, # given a sample image iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]]) # These are the values of these two quantities, as Numpy arrays, # given our sample image of two elephants pooled_grads_value, conv_layer_output_value = iterate([x]) # We multiply each channel in the feature map array # by "how important this channel is" with regard to the elephant class for i in range(512): conv_layer_output_value[:, :, i] *= pooled_grads_value[i] # The channel-wise mean of the resulting feature map # is our heatmap of class activation heatmap = np.mean(conv_layer_output_value, axis=-1) #热力图后处理 import matplotlib.pyplot as plt heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) plt.matshow(heatmap) plt.show() #热力图与原始图相叠加 import cv2 # We use cv2 to load the original image img = cv2.imread(img_path) # We resize the heatmap to have the same size as the original image heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0])) # We convert the heatmap to RGB heatmap = np.uint8(255 * heatmap) # We apply the heatmap to the original image heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # 0.4 here is a heatmap intensity factor superimposed_img = heatmap * 0.4 + img # Save the image to disk cv2.imwrite('D:\\Jupyter\\elephant_hot.jpg', superimposed_img)
- 个人理解
取卷积核的输出对最终特定的特征向量的梯度向量,与二维图每点的每个特征通道对应相乘,再对图的第三维上做均值运算,得出热力图。