猫狗大战---使用预训练模型①

猫狗大战—使用预训练模型VGG16①

  • 法①: 将输出保存成Numpy数组作为独立的密集连接分类器的输入,速度快代价低,但不能使用数据增强
  • 法②: 在顶部添加Dense层来扩展已有模型(即conv_base),并在输入数据上端到端的运行整个模型,可以使用数据增强。
  • 本篇现将法①

数据导入

将图像复制到训练,验证和测试目录

import os
import shutil

TRAIN_DIR = 'D:\\Jupyter\\dogs-vs-cats\\'
BASE_DIR = 'E:\\BaiduNetdiskDownload\\kaggle\\train\\'

#举一个train文件夹的例子
train_dir = os.path.join(TRAIN_DIR, 'train')
#os.mkdir(train_dir)

train_cats_dir = os.path.join(train_dir, 'cats')
#os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'dogs')
#os.mkdir(train_dogs_dir)

#举一个复制图片里猫猫的例子
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(BASE_DIR, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
    src = os.path.join(BASE_DIR, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)

fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
    src = os.path.join(BASE_DIR, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)

![目录结构](https://upload-images.jianshu.io/upload_images/2145769-86964833bc33a46a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/245)
### 构建模型
#定义密集分类器
from keras import models
from keras import layers
from keras import optimizers

model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))

model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
             loss='binary_crossentropy',
             metrics=['acc']
             )

数据预处理

不使用数据增强

import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator

base_dir = 'D:\\Jupyter\\dogs-vs-cats\\'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')

datagen = ImageDataGenerator(rescale=1./255)

使用ImageDataGenerator从目录中读取图像

batch_size = 20

def extract_features(directory, sample_count):
    features = np.zeros(shape=(sample_count, 4, 4, 512))
    labels = np.zeros(shape=(sample_count))
    generator = datagen.flow_from_directory(
        directory,
        target_size=(150, 150),
        batch_size=batch_size,
        class_mode='binary'
    )
    i = 0
    for inputs_batch, labels_batch in generator:
        features_batch = conv_base.predict(inputs_batch)
        features[i * batch_size : (i+1) * batch_size] = features_batch
        labels[i * batch_size : (i+1) * batch_size] = labels_batch
        i += 1
        if i * batch_size >= sample_count:
            break
    return features, labels

#张量变形   
train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)

train_features = np.reshape(train_features, (2000, 4 * 4 * 512))
validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512))
test_features = np.reshape(test_features, (1000, 4 * 4 * 512))

利用批量生成器拟合模型

history = model.fit(train_features, train_labels,
                   epochs=30,
                   batch_size=20,
                   validation_data=(validation_features, validation_labels))

绘制训练过程中的损失曲线和精度曲线

import matplotlib.pyplot as plt

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']

epochs = range(1, len(acc)+1)

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validaton acc')
plt.title('Training and Validation accuracy')
plt.legend()

plt.figure()

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()

plt.show()