猫狗大战
- 自制模型
数据导入
将图像复制到训练,验证和测试目录
import os
import shutil
TRAIN_DIR = 'D:\\Jupyter\\dogs-vs-cats\\'
BASE_DIR = 'E:\\BaiduNetdiskDownload\\kaggle\\train\\'
#举一个train文件夹的例子
train_dir = os.path.join(TRAIN_DIR, 'train')
#os.mkdir(train_dir)
train_cats_dir = os.path.join(train_dir, 'cats')
#os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'dogs')
#os.mkdir(train_dogs_dir)
#举一个复制图片里猫猫的例子
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)

### 构建模型
#定义一个包含dropout层的新卷积网络
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D(2, 2))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D(2, 2))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D(2 ,2))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
数据预处理
使用数据增强
datagen = ImageDataGenerator(
rotation_range = 40,#随机旋转角度值
width_shift_range = 0.2,#平移水平的相对范围
height_shift_range = 0.2,#平移高度的相对范围
shear_range = 0.2,#随机交错变换的角度
zoom_range = 0.2,#图像随机缩放的范围
horizontal_flip = True,#随机将一半的图像水平翻转
fill_mode = 'nearest'#用于填充创建像素的方法,这些新像素可能来自旋转或宽度/高度平移
)
#增强预览
from keras .preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
img_path = fnames[50]#选一张图片进行增强
img = image.load_img(img_path, target_size=(150, 150))#读取图像并且调整大小
x = image.img_to_array(img)#将其形状变成形状为(150,150,3)的Numpy数组
x = x.reshape((1,) + x.shape)#将其形状改变成为(1,150,150,3)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure()
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 ==0:
break
plt.show()
使用ImageDataGenerator从目录中读取图像
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip=True,
)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary',#因为使用了binary_crossentropy损失,所以需要用二进制标签
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary'
)
利用批量生成器拟合模型
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=100,
validation_data=validation_generator,
validation_steps=50
)
绘制训练过程中的损失曲线和精度曲线
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validaton acc')
plt.title('Training and Validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()
保存模型
model.save(‘cats_and_dogs_small_2.h5’)