猫狗大战—使用预训练模型VGG16①
- 法①: 将输出保存成Numpy数组作为独立的密集连接分类器的输入,速度快代价低,但不能使用数据增强
- 法②: 在顶部添加Dense层来扩展已有模型(即conv_base),并在输入数据上端到端的运行整个模型,可以使用数据增强。
- 本篇现将法②
数据导入
将图像复制到训练,验证和测试目录
import os
import shutil
TRAIN_DIR = 'D:\\Jupyter\\dogs-vs-cats\\'
BASE_DIR = 'E:\\BaiduNetdiskDownload\\kaggle\\train\\'
#举一个train文件夹的例子
train_dir = os.path.join(TRAIN_DIR, 'train')
#os.mkdir(train_dir)
train_cats_dir = os.path.join(train_dir, 'cats')
#os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'dogs')
#os.mkdir(train_dogs_dir)
#举一个复制图片里猫猫的例子
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
src = os.path.join(BASE_DIR, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)
#如果以上步骤之前做过,则
#import os
#base_dir = 'D:\\Jupyter\\dogs-vs-cats\\'
#train_dir = os.path.join(base_dir, 'train')
#validation_dir = os.path.join(base_dir, 'validation')
#test_dir = os.path.join(base_dir, 'test')

### 构建模型
from keras.applications import VGG16
#导入VGG16
conv_base = VGG16(weights='imagenet',#指向模型初始化的权重检查点
include_top=False,#指定模型是否包含密集连接分类器
input_shape=(150, 150, 3)#输入到网络的张量形状
)
from keras import models
from keras import layers
#编译之前“冻结”
conv_base.trainable = False
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
#编译
model.compile(optimizer=optimizers.RMSprop(lr=2e-5),
loss='binary_crossentropy',
metrics=['acc'])
数据预处理
不使用数据增强
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
train_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = 'nearest'
)
test_datagen = ImageDataGenerator(rescale = 1./255)
使用ImageDataGenerator从目录中读取图像
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (150, 150),
batch_size = 20,
class_mode = 'binary',#因为使用binary_crossentropy,所以得使用binary二进制标签
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size = (150,150),
batch_size = 20,
class_mode = 'binary',
)
利用批量生成器拟合模型
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data = validation_generator,
validation_steps=50
)
绘制训练过程中的损失曲线和精度曲线
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validaton acc')
plt.title('Training and Validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation loss')
plt.legend()
plt.show()
保存模型
model.save(‘cats_and_dogs_VGG16_motehod2.h5’)