Reuters_newswires
输入数据要求
- 分类问题
输入数据是向量,标签是one-hot类型的共有46类
数据导入
from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)### 数据观测
#输入数据是数字的数组,数字映射英文单词 #eg:[1,14,22,48,6489,9999,...,598] #word_index是 英文字母:数字 的映射字典 word_index = imdb.get_word_index() #键值反转, 数字:英文字母 reverse_word_index = dict( (value, key) for (key, value) in word_index.items()) #显示第一条影评 decode_review = ' '.join( [reverse_word_index.get(i - 3, '?') for i in train_data[0]])### 数据处理
#目的是吧输入数据处理成显示词频的向量,有该单词则向量对应位置置1 import numpy as np def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences),dimension)) for i, sequence in enumerate(sequences): #print(sepuence) results[i,sequence] = 1 return results x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) #将y_input转化为one-hot类型 #法① # def to_one_hot(labels, dimension=46): # results = np.zeros((len(labels), dimension)) # for i, label in enumerate(labels): # results[i, label] = 1. # return results # # Our vectorized training labels # one_hot_train_labels = to_one_hot(train_labels) # # Our vectorized test labels # one_hot_test_labels = to_one_hot(test_labels) #法② from keras.utils.np_utils import to_categorical one_hot_train_labels = to_categorical(train_labels) one_hot_test_labels = to_categorical(test_labels)### 模型搭建
from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(46, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] partial_y_train = y_train[10000:] history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) #使用512个样本的小批量,将模型训练20轮次,监控validation_data(留出的10000个样本——验证数据)
模型评估
# 画损失率和正确率的变化图 history_dict = history.history print(history_dict.keys()) #dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) # 损失率 import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history_dict['val_acc'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epoch = range(1, len(acc) +1) plt.plot(epoch,loss,'bo', label='Training Loss') plt.plot(epoch,val_loss,'b',label='Validation Loss') plt.title('Training and validation') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # 正确率 plt.clf() plt.plot(epoch,acc,'bo',label='Training acc') plt.plot(epoch,val_acc,'b',label='Validation acc') plt.title('Training and Validation accuracy') plt.xlabel('Epoch') plt.ylabel('accuracy') plt.legend() plt.show()### 模型优化 >画图得知模型在8轮后过拟合了,所以8轮时停止
model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(10000,))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(46, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(partial_x_train, partial_y_train, epochs=8, batch_size=512, validation_data=(x_val, y_val)) results = model.evaluate(x_test, one_hot_test_labels) #results #[0.98764628548762257, 0.77693677651807869]### 模型使用 >predictions = model.predict(x_test) >np.argmax(predictions[0])
>>>> 37 #输出种类