IMDB影评分类
输入数据要求
- 分类问题
输入数据是向量,标签是标量[0/1]代表差/好评
数据导入
from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data( num_words=10000)### 数据观测
#输入数据是数字的数组,数字映射英文单词 #eg:[1,14,22,48,6489,9999,...,598] #word_index是 英文字母:数字 的映射字典 word_index = imdb.get_word_index() #键值反转, 数字:英文字母 reverse_word_index = dict( (value, key) for (key, value) in word_index.items()) #显示第一条影评 decode_review = ' '.join( [reverse_word_index.get(i - 3, '?') for i in train_data[0]])### 数据处理
#目的是吧输入数据处理成显示词频的向量,有该单词则向量对应位置置1 import numpy as np def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences),dimension)) for i, sequence in enumerate(sequences): #print(sepuence) results[i,sequence] = 1 return results x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) y_train = np.asarray(train_labels).astype('float32') y_test = np.asarray(test_labels).astype('float32')### 模型搭建
from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(16, activation='relu', input_shape=(10000,))) model.add(layers.Dense(16, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy',#二元交叉熵 metrics=['accuracy'] ) x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] partial_y_train = y_train[10000:] history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) #使用512个样本的小批量,将模型训练20轮次,监控validation_data(留出的10000个样本——验证数据)
模型评估
# 画损失率和正确率的变化图 history_dict = history.history print(history_dict.keys()) #dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) # 损失率 import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history_dict['val_acc'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epoch = range(1, len(acc) +1) plt.plot(epoch,loss,'bo', label='Training Loss') plt.plot(epoch,val_loss,'b',label='Validation Loss') plt.title('Training and validation') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # 正确率 plt.clf() plt.plot(epoch,acc,'bo',label='Training acc') plt.plot(epoch,val_acc,'b',label='Validation acc') plt.title('Training and Validation accuracy') plt.xlabel('Epoch') plt.ylabel('accuracy') plt.legend() plt.show()### 模型优化 >画图得知模型在4轮后过拟合了,所以4轮时停止 >这里我改了一改模型··请忽略 :P
model = models.Sequential() model.add(layers.Dense(16, activation='relu',input_shape=(10000,))) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'] ) model.fit(x_train,y_train,epochs=4, batch_size=512) result = model.evaluate(x_test, y_test) #result #[0.31514283887386324, 0.88116]### 模型使用 >model.predict(x_test)#估计是好评的概率
array([[0.20031697], [0.99983263], [0.9702985 ], ..., [0.12498155], [0.05971182], [0.7418488 ]], dtype=float32)