Boston房价预测
输入数据要求
- 回归问题
- 标准化处理输入数据
- k-折评估少样本模型
- 滑动均值平滑epoch均方差观测图
输入数据是向量,对应13个特征,且每个特征都有不同的取值范围.标签是标量,代表房价中位数。样本数很少,404个训练样本和102个测试样本。
train_data.shape#(404, 13) test_data.shape#(102, 13) train_targets.shape#(404,)### 数据导入
from keras.datasets import boston_housing (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()### 数据观测
train_data.shape#(404, 13) test_data.shape#(102, 13) train_targets.shape#(404,)### 数据处理
#目的是均衡取值范围,将特征标准化。将取值范围差别很大的输入神经网络会产生很大问题。 mean = train_data.mean(axis=0) train_data -= mean std = train_data.std(axis=0) train_data /= std test_data -= mean test_data /= std### 模型搭建
#函数式编程返回编译好的模型 from keras import models from keras import layers def build_model(): # Because we will need to instantiate # the same model multiple times, # we use a function to construct it. model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])#均方差 return model
模型训练与评估
- k折交叉验证
- <对少样本数据进行可靠的评估>
#样本很少,验证分数会有很大波动,验证集的划分方式可能会造成验证分数上很大的方差
import numpy as np
k = 4
num_val_samples = len(train_data) // k
num_epochs = 100
all_scores = []
for i in range(k):
print(‘processing fold #’, i)
# Prepare the validation data: data from partition # k
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
# Prepare the training data: data from all other partitions
partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)
# Build the Keras model (already compiled)
model = build_model()
# Train the model (in silent mode, verbose=0)
model.fit(partial_train_data, partial_train_targets,
epochs=num_epochs, batch_size=1, verbose=0)
# Evaluate the model on the validation data
val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
all_scores.append(val_mae)
#all_scores
#[2.0750808349930412, 2.117215852926273, 2.9140411863232605, 2.4288365227161068]
#np.mean(all_scores)
#2.3837935992396706
模型评估
from keras import backend as K # Some memory clean-up K.clear_session() # 延长训练时间达到500轮次,为了记录模型在每轮的表现,我们需要修改训练循环,以保存每轮的验证分数记录 num_epochs = 500 all_mae_histories = [] for i in range(k): print('processing fold #', i) # Prepare the validation data: data from partition # k val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples] val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples] # Prepare the training data: data from all other partitions partial_train_data = np.concatenate( [train_data[:i * num_val_samples], train_data[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate( [train_targets[:i * num_val_samples], train_targets[(i + 1) * num_val_samples:]], axis=0) # Build the Keras model (already compiled) model = build_model() # Train the model (in silent mode, verbose=0) history = model.fit(partial_train_data, partial_train_targets, validation_data=(val_data, val_targets), epochs=num_epochs, batch_size=1, verbose=0) mae_history = history.history['val_mean_absolute_error'] all_mae_histories.append(mae_history) #计算每个轮次中所有折MAE,取每轮的k个模型的均值 #all_mae_histories.shape() #[4,500] average_mae_history = [ np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)] #average_mae_history.shape() #[500,] #绘制按轮次的验证分数 import matplotlib.pyplot as plt plt.plot(range(1, len(average_mae_history) + 1), average_mae_history) plt.xlabel('Epochs') plt.ylabel('Validation MAE') plt.show() # 得知前10个epoch异常,先删除前10点 #之后波动过大,采用滑动均值模型得到光滑曲线继续观测 def smooth_curve(points, factor=0.9): smoothed_points = [] for point in points: if smoothed_points: previous = smoothed_points[-1] smoothed_points.append(previous * factor + point * (1 - factor)) else: smoothed_points.append(point) return smoothed_points smooth_mae_history = smooth_curve(average_mae_history[10:]) plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history) plt.xlabel('Epochs') plt.ylabel('Validation MAE') plt.show()### 模型优化 >画图得知模型在8轮后过拟合了,所以8轮时停止
# Get a fresh, compiled model. model = build_model() # Train it on the entirety of the data. model.fit(train_data, train_targets, epochs=80, batch_size=16, verbose=0) test_mse_score, test_mae_score = model.evaluate(test_data, test_targets) #test_mae_score #2.5532484335057877### 模型使用 >model.predict(x_test)#估计是好评的概率
array([[0.20031697], [0.99983263], [0.9702985 ], ..., [0.12498155], [0.05971182], [0.7418488 ]], dtype=float32)