Opencv边缘检测:Laplacian函数和scharr滤波器

(基本)参考的博文:

https://blog.csdn.net/poem_qianmo/article/details/25560901

Laplacian函数

C++: void Laplacian(InputArray src,OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, intborderType=BORDER_DEFAULT );

第一个参数,InputArray类型的image,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位图像。
第二个参数,OutputArray类型的edges,输出的边缘图,需要和源图片有一样的尺寸和通道数。
第三个参数,int类型的ddept,目标图像的深度。
第四个参数,int类型的ksize,用于计算二阶导数的滤波器的孔径尺寸,大小必须为正奇数,且有默认值1。
第五个参数,double类型的scale,计算拉普拉斯值的时候可选的比例因子,有默认值1。
第六个参数,double类型的delta,表示在结果存入目标图(第二个参数dst)之前可选的delta值,有默认值0。
第七个参数, int类型的borderType,边界模式,默认值为BORDER_DEFAULT。这个参数可以在官方文档中borderInterpolate()处得到更详细的信息。
Laplacian( )函数其实主要是利用sobel算子的运算。它通过加上sobel算子运算出的图像x方向和y方向上的导数,来得到我们载入图像的拉普拉斯变换结果。
其中,sobel算子(ksize>1)如下: ![image](http://img.blog.csdn.net/20140511215812515?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcG9lbV9xaWFubW8=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
而当ksize=1时,Laplacian()函数采用以下3x3的孔径: ![image](http://img.blog.csdn.net/20140511215703203?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcG9lbV9xaWFubW8=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
#### 部分实例:(先高斯滤波,转灰度图)
Laplacian( src_gray, dst, CV_16S, 3, 1, 0, BORDER_DEFAULT ); 
convertScaleAbs( dst, abs_dst );  

scharr滤波器

C++: void Scharr(  
InputArray src, //源图  
 OutputArray dst, //目标图  
 int ddepth,//图像深度  
 int dx,// x方向上的差分阶数  
 int dy,//y方向上的差分阶数  
 double scale=1,//缩放因子  
 double delta=0,// delta值  
 intborderType=BORDER_DEFAULT )// 边界模式 

 第一个参数,InputArray 类型的src,为输入图像,填Mat类型即可。
第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,需要和源图片有一样的尺寸和类型。
第三个参数,int类型的ddepth,输出图像的深度,支持如下src.depth()和ddepth的组合:
若src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F
若src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
若src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
若src.depth() = CV_64F, 取ddepth = -1/CV_64F
第四个参数,int类型dx,x方向上的差分阶数。
第五个参数,int类型dy,y方向上的差分阶数。
第六个参数,double类型的scale,计算导数值时可选的缩放因子,默认值是1,表示默认情况下是没有应用缩放的。我们可以在文档中查阅getDerivKernels的相关介绍,来得到这个参数的更多信息。
第七个参数,double类型的delta,表示在结果存入目标图(第二个参数dst)之前可选的delta值,有默认值0。
第八个参数, int类型的borderType,我们的老朋友了(万年是最后一个参数),边界模式,默认值为BORDER_DEFAULT。这个参数可以在官方文档中borderInterpolate处得到更详细的信息。

使用Scharr滤波器运算符计算x或y方向的图像差分。其实它的参数变量和Sobel基本上是一样的,除了没有ksize核的大小。

(部分)代码实例:

Scharr( src, grad_x, CV_16S, 1, 0, 1, 0, BORDER_DEFAULT );  
convertScaleAbs( grad_x, abs_grad_x ); 

Scharr( src, grad_y, CV_16S, 0, 1, 1, 0, BORDER_DEFAULT );  
convertScaleAbs( grad_y, abs_grad_y ); 

addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, dst );